Opponent Modeling in Scrabble

نویسندگان

  • Mark Richards
  • Eyal Amir
چکیده

Computers have already eclipsed the level of human play in competitive Scrabble, but there remains room for improvement. In particular, there is much to be gained by incorporating information about the opponent’s tiles into the decision-making process. In this work, we quantify the value of knowing what letters the opponent has. We use observations from previous plays to predict what tiles our opponent may hold and then use this information to guide our play. Our model of the opponent, based on Bayes’ theorem, sacrifices accuracy for simplicity and ease of computation. But even with this simplified model, we show significant improvement in play over an existing Scrabble program. These empirical results suggest that this simple approximation may serve as a suitable substitute for the intractable partially observable Markov decision process. Although this work focuses on computer-vs-computer Scrabble play, the tools developed can be of great use in training humans to play against other humans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proposal Title : Application of Evolutionary Computation to Opponent Modeling in Games of Imperfect

The video game industry is an area of high and increasing profitability, with $US 6 billion spent by U.S. consumers alone in the year 2001 [1]. In order to attract buyers, there is increasing demand to simulate human opponents artificially within games. As of present, artificial opponents commonly have their game-playing strategies coded in advance, often resulting in overly simplistic and pred...

متن کامل

Robust Opponent Modeling in Real-Time Strategy Games using Bayesian Networks

Opponent modeling is a key challenge in Real-Time Strategy (RTS) games as the environment is adversarial in these games, and the player cannot predict the future actions of her opponent. Additionally, the environment is partially observable due to the fog of war. In this paper, we propose an opponent model which is robust to the observation noise existing due to the fog of war. In order to cope...

متن کامل

First Results from Using Game Refinement Measure and Learning Coefficient in Scrabble

This paper explores the entertainment experience and learning experience in Scrabble. It proposes a new measure from the educational point of view, which we call learning coefficient, based on the balance between the learner’s skill and the challenge in Scrabble. Scrabble variants, generated using different size of board and dictionary, are analyzed with two measures of game refinement and lear...

متن کامل

The World ’ s Fastest

An efficient backtracking algorithm makes with a large dictionary and the heuristic of selecting possible a very fast program to play the SCRABBLE” Brand the move with the highest score at each turn makes a Crossword Game. The efficiency is achieved by creating data very fast program that is rarely beaten by humans. The structures before the backtracking search begins that serve program makes n...

متن کامل

Testing the Limits of Skill Transfer for Scrabble Experts in Behavior and Brain

We investigated transfer of the skills developed by competitive Scrabble players. Previous studies reported superior performance for Scrabble experts on the lexical decision task (LDT), suggesting near transfer of Scrabble skills. Here we investigated the potential for far transfer to a symbol decision task (SDT); in particular, transfer of enhanced long-term working memory for vertically prese...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007